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Molecular Dynamics of Stage 3 Cesium 
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Stage 3 casium intercalated graphite is simulated. The dependence of the struc- 
tural properties of the simulated system on the barrier height of the graphite 
periodic potential is shown. The periodic component of the radial distribution 
function g(r) due to the substrate modulation potential is clearly visible. It 
appears as a result of the delicate balance between the in-plane cesium-cesium 
interactions and the substrate modulation potential. 
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1. INTRODUCTION 

Intercalation compounds are formed by the insertion of atomic or 
molecular layers of a guest species--an intercalant--between layers in a 
host material. Graphite is a good example of a host material for intercala- 
tion compounds. After graphite is exposed at elevated temperatures to the 
vapor phase of either alkali metals or a variety of molecular species, the 
normal sequence of graphite layers is regularly interrupted by single layers 
of an intercalent. The stage of intercalation is defined as a number of 
graphite layers separating layers of intercalated species. 

The intercalated layers present a quasi two-dimensional (2D) system 
subjected to the (a) periodic potential due to the graphite lattice and (b) 
out-of-plane intercalant-intercalant interactions, the latter depending 
strongly on the stage of intercalation. The static and dynamic properties of 
an intercalated layer are determined by the competition of inter- and 
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intralayer interactions with those of the potential energy surface due to the 
graphite lattice. 

In this paper we neglect the interlayer interactions, which are negli- 
gible for stage 3 compounds at higher temperature. We report molecular 
dynamics simulations of cesium intercalated graphite in stage 3. Our 
concern is the structure of a 2D layer of cesium atoms in the periodic field 
due to the graphite lattice at temperatures near 300 K, where quasi liquid 
behavior has been observed for the alkali metal layer [1 ]. As in our pre- 
vious papers [-2-4] the periodic potential is modeled via Lennard-Jones 
interactions between cesium and carbons of the graphite lattice. In this 
work we chose the potential parameters to give a barrier height of 
0.0585 eV (rather lower then estimates from X-ray analysis [5] but consis- 
tent with calculations based on the density functional theory [6]). The 
primary objective of this paper is to compare the structure of the inter- 
calated layer calculated with this barrier height to our previous results from 
a barrier height of 0.0338 eV. The anisotropy of the system induced by the 
modulation potential is briefly discussed. 

Section 2 describes briefly the potential models and details of the 
simulations. Results of the simulations are presented and discussed in 
Section 3. 

2. POTENTIAL AND SIMULATION DETAILS 

The potential used in the simulations has been described previously 
[2]. It consists of a two-dimensional periodically varying one-body poten- 
tial, U (1), due to the interactions of the cesium atoms with the graphite 
lattice; the Lennard-Jones parameters of the cesium graphite interactions 
are taken as ~/k = 150 K and a = 3.24/~. 

The interactions between cesium atoms are composed of two parts 
[2]: (i) a Lennard-Jones interaction, UL-j, with e /k=190K and 
a = 3.61 ~, between Cs + cores, and (ii) an electrostatic interaction, UQ_ Q, 
modeled by rigid axial quadrupoles perpendicular to the graphite layers. 

The electrostatic part approximates the screening due to the readjust- 
ment of the conduction electron distribution according to the motion of ion 
cores. Thus, the potential used in simulations is of the form 

U({rN})=~ U(a)(r~)+ ~ [-Uo_Q(ri, rj)+ UL_j(rg, rj)] (1) 
i i < j  

The geometry of thc graphite lattice corresponds to normal graphite; 
the nearest in-plane neighbor distance is 1.42 ~ and the nearest interplane 
distance is 3.35 ~. The distance between graphite planes confining the 
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cesium layer was taken equal to 6.01 ~, the experimentally measured value 
[7]. 

The graphite modulation potential has been calculated for a set of 
points and was used in the form of a table during the simulations. The 
values of forces and energy between the calculated positions were obtained 
by linear interpolation. The motion of the ion cores was restricted to the 
plane midway between two adjacent graphite planes and no rotations of 
axial quadrupoles were allowed. 

The MD simulations were performed with 576 Cs atoms, and the 
planar density of Cs corresponded to that of a stage 3 compound with the 
bulk stoichiometry C36Cs; thus, the ratio of the number of cesium atoms 
to the number of carbon atoms in the adjacent carbon layer is 1:12. The 
minimum image boundary conditions were imposed on the system and the 
cutoff distance for the interactions has been taken equal to 18.4a 
(o- = 3.61 ~). The simulation box is a rectangle rather than a square. For a 
given number of simulated atoms there are a few possible choices of the 
box side lengths accommodating the periodicity of the graphite lattice. We 
chose the one for which the box side length ratio is closest to one. 
Newton's equations of motion were integrated with the Verier algorithm 
[8]. The time step of integration was 0.009 ps and the run extended to 
21,000 ts. The calculations were performed on a Fujitsu VP(100) super- 
computer. 

3. RESULTS AND DISCUSSION 

The average temperature of the MD run was 292.4 K~ During simula- 
tions the histograms were accumulated for calculations of the time-inde- 
pendent properties, namely, the radial distribution function, g(r), density 
profiles, n(x) and n(y), and the planar probability density, p(r), of finding 
a cesium atom at a given distance from the center of a graphite hexagon. 
The static structure factor S(k) was calculated in the k vector-dependent 
form and averaged over all vectors k having a length between k and 
k+Ak. 

The results of the present simulations (referred to as system A below) 
are compared with those performed with 192 Cs atoms [4] for the barrier 
height of 0.0338eV (system B; the efficiency of the then accessible 
MicroVax computer limited out calculations to 192 cesium atoms). We 
have verified that, in this context, the effects of system size are insignificant. 

3.1. Structural Properties 

A convincing illustration of the anisotropy induced in system A is 
presented in Fig. 1. The singlet density distribution function is plotted as 
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Fig. 1. Profiles of the singlet density 
distribution function for system A; 
n(x)=n(y)=l corresponds to the 
isotropic distribution. 

viewed along the x and y directions of the graphite lattice. The lattice 
structure is reflected in the different periodicities of the two cuts. The dis- 
tance between the consecutive peaks of n(y) is equal to 2.13/~, which 
corresponds exactly to the distance between hexagon centers viewed from 
the y direction. The curves are not as well formed as those obtained for the 
system treated by the self-consistent solution of integral equations [-9] 
with about 1.5 times stronger graphite potential, but the essential lattice 
periodicity is apparent. Results for the density profiles of system B are very 
similar but the amplitude of the oscillations is lower. 

In Fig. 2 the radial distribution functions are presented. The g(r) for 
system A (Fig. 2a) clearly displays the competition resulting from different 
length scales defined by the size of Cs atoms and the periodicity of the 
underlying potential. At short distances the Cs-Cs interactions dominate 
the shape of g(r); at large r the tong-range periodic component prevails. 
The g(r) of system B (Fig. 2b, thick line) looks much more "liquid-like"; 
the periodic component is hardly visible. We have shown in Ref. 4 that it 
is practically undistinguishable from the "real" liquid g(r) obtained with 
the graphite periodic potential equal to zero. 

Both the singlet distribution function (Fig. 1 ) and the g(r) (Fig. 2a) of 
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Fig. 2. Radial distribution func- 
tions. (a) System A, modulated 
g(r). (b) Solid line, g(r) of system 
B; open squares, "unmodulated" 
g(r) of the system A. 

system A show the existence of a pronounced density wave induced by the 
increased barrier height of the periodic potential. If the structure represen- 
ted by g(r) is a simple response to the increase in the barrier height, then 
the extraction of the periodic component from system A's g(r) should lead 
us back to the g(r) of system B. To extract the periodic component from 
the g(r) of system A we make use of the fact that the periodic modulation 
of g(r) gives rise to a 6-function Bragg contribution to the static structure 
factor S(k) at the reciprocal vectors of the graphite lattice. The S(k) values 
for system A and system B are displayed in Fig. 3. The cosine wave with 
a period 2, defined by the position of the 6 function in S(k) kg = 2n/2 = 
2.945 ,~-1, and an amplitude a estimated from g(r) at large r is taken away 
from system A's g(r). The procedure is as follows: the position of a maxi- 
mum of g(r) at a large r is found and denoted rma x (see Fig. 2a), then the 
equation kgrmax+O=(2n+ 1)rt is solved for a phase shift 0 and the 
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Structure factor S(k) averaged over angles. Solid line, system 
A; open squares, system B. 
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Fig. 4. The structure factor S(k) in the first quadrant as a function of kx and ky. (a) 
System A, with the intensities of the twop main Brag peaks reduced by a factor of 8 
and the third one by a factor of two; (b) system B, with Bragg peaks of normal 
intensity. 
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The planar probability function p(r). Solid line, 
system A; dashed line, system B. 

"unmodulated" g(r) (dnoted by open squares in Fig. 2b) is found by addi- 
tion: g . . . .  d(r) ---- gmod(r) + a cos(kgr + 0). As may be seen in Fig. 2b, the 
unmodulated g(r) of system A matches perfectly well that of system B. 

Thus, the strong periodic potential introduces a solid-like component 
into the system, causing the increased registration of the cesium atoms. 

Perhaps the most spectacular presentation of this result is that of the 
calculated S(k) shown for the first quadrant in k space in Fig. 4. The 
sixfold symmetry, corresponding to that of the underlying lattice, is quite 
evident. The sharp spikes at the reciprocal vectors of the graphite lattice, 
together with their surrounding halos, were experimentally observed in 
X-ray scattering experiments on C24Rb and C24K [10, 11]. The much 
more intense spikes of system A indicate stronger localization of the Cs 
atoms at the centers of the graphite hexagons. This result may be seen 
as well in Fig. 5, where the probability of finding a Cs atom at a given 
distance from the center of a hexagon is plotted. 

3.2. Concluding Remark 

The strong influence of the strength of the graphite periodic potential 
on the structure of the intercalated layer is evident from Figs. 2-5. Our 
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simulations show that for a barrier height of 0.0585 eV and temperature 
T =  291 K, the intercalated layer of cesium atoms may be regarded as a 
strongly modulated liquid phase. It seems very possible that further 
increase in the barrier height may cause a phase transition to a registered 
state. Work on this subject is in progress. 

ACKNOWLEDGMENTS 

We are grateful to the Computer Services Centre of the Australian 
National University for a computing time on the Fujitsu VP-100 super- 
computer. One of us (P.A.W.) acknowledged financial assistance from the 
organizers of the Tenth Symposium on Thermophysical Properties. We are 
grateful for some valuable discussions with H. J. M. Hanley. 

REFERENCES 

1. R. Clarke, N. Caswell, S. A. Solin, and P. M. Horn, Phys. Rev. Lett. 43:2018 (1979). 
2. J. W. White and P. A. Wielopolski, Phys. Rev. B 36:6069 (1987). 
3. J. W. White and P. A. Wielopolski, Mol. Phys. 63:165 (1988). 
4. J. W. White and P. A. Wielopolski, Mol. Phys. 63:669 (1988). 
5. S. C. Moss, G. Reiter, J. L. Robertson, C. Thompson, and J. D. Fan, Phys. Rev. Lett. 

57:3191 (1986). 
6. D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 22:2538 (1985). 
7. W. Stead, Ph.D. thesis (Oxford, University, Oxford, 1986). 
8. L. Verlet, Phys. Rev. 1259:98 (1967). 
9. O. A. Karim and B. M. Pettitt, Chem. Phys. Lett. 137:72 (1987). 

10. F. Rousseaux, R. Moret, D. Guerard, P. Lagrange, and M. Lelaruain, J. Phys. (Paris) 
Lett. 45:Lll l  (1984). 

11. F. Rousseaux, R. Moret, D. Guerard, P. Lagrange, and M. Lelaruain, Synth. Met. 12:45 
(1985). 


